
SMART CONTRACT
SECURITY ANALYSIS

PRESENTED TO
ApeMax

PREPARED BY
Saulidity

2023

SECURITY
REPORT

SAULIDITY
2 0 2 3

saul id i ty.com
Saul id i ty
@Saul id i ty

Smart Contract
Audit

This report does not constitute financial advice, and Saulidity is
not accountable or liable for any negative consequences
resulting from this report, nor may Saulidity be held liable in
any way. You agree to the terms of this disclaimer by reading
any part of the report. If you do not agree to the terms, please
stop reading this report immediately and delete and destroy
any and all copies of this report that you have downloaded
and/or printed. This report was entirely based on information
given by the audited party and facts that existed prior to the
audit. Saulidity and/or its auditors cannot be held liable for any
outcome, including modifications (if any) made to the
contract(s) for the audit that was completed. No modifications
have been made to the contract(s) by the Saulidity team unless
it is indicated explicitly. The audit does not include the project
team, website, logic, or tokenomics, but if it does, it will be
indicated explicitly. The security is evaluated only on the basis
of smart contracts only. There were no security checks
performed on any apps or activities. There has not been a
review of any product codes. It is assumed by Saulidity that the
information and materials given were not tampered with,
censored, or misrepresented. Even if this report exists and
Saulidity makes every effort to uncover any security flaws, you
should not rely completely on it and should conduct your own
independent research. Saulidity hereby excludes all liability and
responsibility, and neither you nor any other person shall have
any claim against Saulidity, for any amount or kind of loss or
damage that may result to you or any other person or any kind
of company, community, association and institution. Saulidity
is the exclusive owner of this report, and it is published by
Saulidity. Without Saulidity's express written authorization, use
of this report for any reason other than a security interest in the
individual contacts, or use of sections of this report, is
forbidden.

DISCLAIMER

SAULIDITY AUDIT 1

Table of Contents

Saulidity

Introduction

02

03

Scope

SC Weakness Registry

04

05

06

Appendix

Audit & Project Information

Summary Table

09

10

Executive Summary

Inheritance

11

12

Call Graph13

Analysis14
Testing Standards19

SAULIDITY AUDIT 2

Saulidity

Saulidity is a renowned cybersecurity firm
specializing in the analysis and development
of Smart contracts. Saulidity, as a full-service
security organization, can help with a variety
of audits and project development.

In a market where confidence and trust are
key, a genuine project may simply increase its
user base enormously with an official audit
performed by Saulidity.

SAULIDITY AUDIT 3

Introduction

For a thorough understanding of the audit, please read
the entire document.

The goal of the audit was to find any potential smart
contract security problems and vulnerabilities.
The information in this report should be used to
understand the smart contract's risk exposure and as a
guide to improving the smart contract's security posture
by addressing the concerns that were discovered.

During our audit, we conducted a thorough inquiry using
automated analysis and manual review approaches.

The security specialists did a complete study
independently of one another in order to uncover any
security issues in the contracts as comprehensively as
feasible. For optimum security and professionalism, all of
our audits are undertaken by at least two independent
auditors.

The project's website, logic, or tokenomics have not been
vetted by the Saulidity team.

SAULIDITY AUDIT 4

Scope

We analyze smart contracts for both well-known
and more specific vulnerabilities.

Here are some of the most well-known
vulnerabilities that are taken into account but
not limited to:

• Reentrancy
• Timestamp Dependence
• Gas Limit and Loops
• DoS with (Unexpected) Throw
• DoS with Block Gas Limit
• Transaction-Ordering Dependence
• Style guide violation
• Transfer forwards all gas
• API violation
• Compiler version not fixed
• Unchecked external call - Unchecked math
• Unsafe type inference
• Implicit visibility level

SAULIDITY AUDIT 5

Appendix

Vulnerabilities can be divided into four threat
levels: Critical, High, Medium and Low. The
classification is mainly based on the impact,
likelihood of utilization and other factors.

Critical flaws can result in the loss of assets or the
alteration of data and are often simple to exploit.

High-level vulnerabilities are challenging to exploit,
but they can have a big influence on how smart
contracts are executed, such as giving the public
access to key features.

Although medium-level vulnerabilities should be
fixed, they generally cannot result in the loss of
assets or the manipulation of data.

Low-level flaws are typically caused by code
fragments that are out-of-date, useless, etc. and
cannot significantly affect execution.

ITEM DESCRIPTION

Default
Visibility

Functions and state variables
visibility should be set

explicitly. Visibility levels
should be specified

consciously.

Integer Overflow and
Underflow

If unchecked math is used, all
math operations should be safe
from overflows and underflows.

Outdated
Compiler
Version

It is recommended to use a
recent version of the Solidity

compiler.

Floating
Pragma

Contracts should be deployed
with the same compiler version
and flags that they have been

tested thoroughly.

Unchecked Call
Return Value

The return value of a message
call should be checked.

Access Control
&

Authorization

Ownership takeover should not
bepossible. All crucial functions

should be protected. Users
could not affect data that
belongs to other users.

Selfdestruct
The contract should not be
destroyed until it has funds

belonging to users.

Check-Effect-Interaction
CEI pattern should be followed

if the code performs any
external call.

SC Weakness Registry

SAULIDITY AUDIT 6

SAULIDITY AUDIT 7

ITEM DESCRIPTION

Uninitialized Storage Pointer
Storage type should be set

explicitly if
the compiler version is < 0.5.0.

Assert Violation
Properly functioning code

should never
reach a failing assert statement.

Deprecated Solidity Functions
Deprecated built-in functions

should
never be used.

Delegatecall to Untrusted
Callee

Delegatecalls should only be
allowed to

trusted addresses.

Denial of Service

Execution of the code should
never be

blocked by a specific contract
state

unless it is required.

Race Conditions

Race Conditions and
Transactions Order

Dependency should not be
possible.

Authorization through tx.origin
tx.origin should not be used for

authorization.

Block values as a proxy for time
Block numbers should not be

used for
time calculations.

SC Weakness Registry

SAULIDITY AUDIT 8

ITEM DESCRIPTION

Signature Unique Id

Signed messages should always
have a

unique id. A transaction hash
should not

be used as a unique id.

Shadowing State Variable
State variables should not be

shadowed.

Weak Sources of Randomness
Random values should never be

generated
from Chain Attributes.

Incorrect Inheritance Order

When inheriting multiple
contracts, especially if they
have identical functions, a
developer should carefully
specify inheritance in the

correct order.

Calls Only to
Trusted Addresses

All external calls should be
performed

only to trusted addresses.

Presence of
unused variables

The code should not contain
unused variables if this is not

justified by design.

SC Weakness Registry

Project Name ApeMax

Contract Name

ApeMax_Production.sol
BSC

0x0074E998e03D582108c8168e2a
84A46aaaB42222

Report ID apSAUL001 1.2

Website Apemax.io

Contact ApeMax Team

 Contact
Information

@ArchieHODL
Telegram

Code language Solidity

Audit &
Project Information

SAULIDITY AUDIT 9

SEVERITY FOUND

Critical 0

High 0

Medium 1

Low 2

Lowest / Code Style /
Optimized Practice 0

Summary Table

SAULIDITY AUDIT 1 0

SAULIDITY AUDIT 1 1

Executive Summary

ALL ISSUES FOUND DURING ANALYSIS WERE REVIEWED, AND FALSE
POSITIVES WERE ELIMINATED. THE FINDINGS ARE PRESENTED IN THE
ANALYSIS SECTION OF THE REPORT.

IT SHOULD BE NOTED THAT ALL FINDINGS HAVE BEEN ACKNOWLEDGED
AND/OR MITIGATED BY THE CLIENT.

SAULIDITY AUDIT 1 2

Inheritance

SAULIDITY AUDIT

Helper_Functions (lib)

Legend

fix_for_range

normalize_timesubsidy_integralcalculate_subsidy_for_range

calculate_taxcalculate_inbound_fees

fix_royalties

delay_function type

verify_minting_authorization

Internal Call
External Call

Defined Contract
Undefined Contract

Call Graph

1 3

Comment: Remember to protect initialize functions.

The Transparent Proxy Pattern is a method that
enables upgrades to be made directly within the
proxy contract itself. This is achieved by assigning
an administrator role that has the power to
communicate with the proxy contract and change the
address of the referenced logic implementation. If a
user without admin privileges tries to make a
request, it will be routed to the implementation
contract instead.

It's crucial to remember that the proxy admin should
not have any important role in the logic
implementation contract, as they cannot communicate
directly with it. This ensures that the security and
integrity of the implementation contract is not
compromised by the actions of the proxy admin.

SAULIDITY AUDIT 1 4

Analysis

Issue: Upgradeable Contact

Severity: Note

Location: General

Description: Any upgradable smart contract carries a
certain degree of risk as the process of upgrading the
contract can introduce new vulnerabilities or flaws
that were not present in the original code.

SAULIDITY AUDIT 1 5

claim_creator_rewards
update_royalties
withdraw_currency
claim_ministerial_rewards
batch_create_staking_contract
create_staking_contract

Issue: Contract owner privileges

Severity: Note

Location: General

Description: The owner has control over these
functions:

Comment: Access to certain functions can be
dangerous depending on the specific use case, as it
could potentially centralize control and introduce
security risks. To mitigate these risks, it is
possible to renounce the ownership of the contract
or to ensure that no single party can unilaterally
control these functions with proper access control
mechanisms, time-lock features, multi-signature
requirements, etc.

Analysis

SAULIDITY AUDIT 1 6

Comment:To improve the randomness and security of
your smart contract's random number generation, it
is recommended to consider alternative methods of
generating random numbers. You can use a verifiable
source of randomness, such as Chainlink VRF, for the
purpose of random number generation.

Analysis

Issue: PRNG

Severity: Medium

Location: L517-605, L554, L571

Description: Weak PRNG due to a modulo on
block.timestamp, block.number, now or blockhash. These
can be influenced by miners to some extent so they
should be avoided.

Status: Acknowledged - See Whitepaper

SAULIDITY AUDIT 1 7

Comment:It is possible to remove tautological checks
without affecting functionality of a smart contract.

Analysis

Issue: Tautology or Contradiction

Severity: Low

Location: L463-480, L466

Description: Unnecessary comparison or superfluous
check.

Status: Mitigated

SAULIDITY AUDIT 1 8

Issue: Division before multiplication

Severity: Low

Location:L304-373, L343-L346, L355-L358

Description: Integer division may result in a
truncation. As a result, executing a multiplication
before division can help to minimize accuracy loss
in some cases.

Analysis

Comment: We recommend to rearrange operations to
ensure that multiplication is performed before
division. This can help in minimizing potential
rounding errors or loss of precision, especially
when working with integers.

Status: Acknowledged

SAULIDITY AUDIT 1 9

Testing Standards

The goal of the audit was to find
any potential smart contract security
problems and vulnerabilities.
The information in this report
should be used to understand the smart
contract's risk exposure and
as a guide to improving the smart contract's
security posture by addressing the concerns
that were discovered.

The blockchain platform is used to deploy and
execute smart contracts. The platform, its
programming language, and other smart
contract-related applications all have
vulnerabilities that may be exploited. As a
result, the audit cannot ensure the audited
smart contract(s) explicit security.Audits
can't make statements or warranties on
security of the code.It also cannot be deemed
an adequate assessment of the code's utility
and safety, bug-free status, or any
statements of the smart contract.While we did
our best in completing the study and
publishing this report, it is crucial to
emphasize that you should not rely only on
it; we advocate all projects doing many
independent audits and participating in a
public bug bounty program to assure smart
contract security.

SAULIDITY AUDIT 20

Testing Standards

1. Gather all relevant data.

2. Perform a preliminary visual
examination of all documents and
contracts.

3. Find security holes with
specialist tools & manual review
with independent experts.

4. Create and distribute a
report.

saul id i ty.com
Saul id i ty
@Saul id i ty

Smart Contract
Audit

